
www.fairlyconfusing.net

SZCZ’s AUDIO ADVENTURES

CELLULAR GAME SEQUENCER

user’s guide

Licence and technical information
Cracklefield is a virtual instrument for Native Instruments Kontakt sampler,
you need full version of Kontakt 5.8.1 or newer to run it.

Instrument interface is fairly large, it takes 1000x770 pixels inside Kontakt.
If you want to be able to access the whole interface without scrolling, be
sure to use screen resolution of at least 1280x1024.

You are licensed to use this device and samples which come with it, in
the creation of a recorded or live sound performance, free or commercial,
without paying any additional licence fees or providing source attribution.

Please DO NOT: include provided scripts and samples in any music library
or sample library; sell, re-package or re-distribute the samples or sampler
programs.

USE AT YOUR OWN RISK! This device is provided ‘as is’ and there is no
warranty of any kind.

�

Cracklefield
Cracklefield is experimental musical device, a fusion between a
sequencer and cellular automaton. While regular sequencers operate
on series of data lines, Cracklefield is using data grid, called the field. It
can animate a number of cursors travelling the field. Cursors can move
horizontally, forward or backward, vertically, up or down, or diagonally,
interacting with the field data, field boundaries, obstacles and, what’s
most interesting, with each other.

The instrument generates more or less complicated, evolving note
patterns by running a kind of mathematical simulation.

It comes with a set of unusual, mostly acoustic sounds, which can
be easily expanded by user samples or copying zones from another
instrument.

Contents:
User interface basics . 3
Programming sequencer field . 4
Cursor mechanics and movement . 7
Cursor collisions . 9
Cursor types: floater and its variations . 10
Cursor types: ants and drones . 11
Cursor types: scanners and drivers . 13
Configuring cursor sound . 14
Note map . 15
Chord mode . 17
Progression generator . 18
Progression sequence . 19
Programming chords . 20
Chord modes . 21
Programming progression sequence . 22
Progression tools menu . 23
Scales, progressions and tuned notes . 24
Velocity map . 25
Custom maps . 26
Mapping modes for percussive sample sets . 26
Cursor shape tab . 27
Edit all cursors switch . 28
Cursor randomisation . 28
ARP mode . 30
Field Animators . 32
Animator modes: MOVE . 33
Animator: move maps . 34
Animator modes: GAMES OF LIFE . 34
Animator modes: REBOOT LIFE . 36
Animator modes: one dimensional games . 36
Animator functions . 36
The sounds of Cracklefield . 37
Adding user sound sets . 40
Preset system . 41
Alternative UI layout . 43
Controller options . 44
Effects and multi-output . 45
MIDI recorder . 47
Performance . 48
Changelog . 48

�

User interface basics
There are three main interface tabs: Sequencer, Effects and Recorder.

Sequencer tab contains instrument main engine controllers. Effects tab
(obviously) provides controllers for included audio effects. In the last tab,
Recorder, you can find MIDI note recorder with drag’n’drop functionality,
as well as various controller options.

Sequencer part of the interface has several sub-tabs: motion, sound,
shape, ANIMA (animator), mapS and presets.

Sequencer start button starts/stops the sequencer. MIDI keys can
be used to play along with the generated sequence. There’s also
“arpeggiator mode”, where the sequencer is running for as long as
there are keys being held on MIDI keyboard, using chord notes to
determine which notes to play in the sequence. (Note that when ARP is
on, sequencer start button has no function, sequencer starts/stops
automatically).

Main UI tabs Sequencer start button

Sequencer UI tab switches

Sequencer field

�

Programming sequencer field
Sequencer field is rectangle cellular grid. A cursor generates a sound
when it travels onto a filled cell. The field can be programmed manually, or
filled automatically.

Maximum field size is 22x22 cells. It can be trimmed down to 4x4 cells.
To set field dimensions, use width and height controllers (which act as
vertical sliders). Unused portion of the field is greyed out (hidden) and it is
not used in simulation.

There are three field edit mode switches: edit cells, edit walls and
set cursor.

Set edit cells to program cell data, that is, switch the cells on/off
(filled/empty). To do so, simply click on a cell. When programming cells,
three key-switches can be used. Hold “shift”, while clicking, to apply
changes to entire field row. Hold “alt” to apply changes to entire column.
Hold “control” with “alt” and/or “shift” to swap values (empty becomes
filled and vice versa) in whole row/column.

Use edit walls switch, to place or remove walls on the field. A wall acts
as an obstacle for cursors, which will (depending on cursor mode) bounce
off them, or teleport to the other side.

Set cursor mode can be used to conveniently position cursors in
the field. When this mode is active, clicking on a field cell will place
selected cursor at that cell. There’s selected cursor controller, next to
set cursor switch. Click on it, to select cursor from a drop-down menu.
Alternatively, you can select a cursor by clicking on the cell, it is set at,
which is more convenient than using the menu.

empty cell

filled cell

a wall

cell occupied
by a cursor

field edit
mode

switches

selected
cursor

unused cell

process field
menu

field dimensions controllers

�

Field contents can be generated/modified automatically; to see the list of
available options, click on Process field drop-down menu.

Options:

Clear field – set all cells to empty.

Invert field – swap values for all cells (filled cell becomes empty and
vice versa).

Clear walls – remove all wall cells.

Generate field pattern – generate a random pattern, each row will be filled
with repeating sequence.

Randomise field – pick random cells and swap their values, can be applied
to 10, 20 or 50% of cells.

Symmetrise (double mirror) – clones upper-left quarter of the field. First it
is mirrored horizontally, then upper half of the field is mirrored vertically.

Symmetrise (square and twist) – clones upper-left quarter of the field. It is
being rotated by 90 degrees and copied into following field quarters. Field
width and height will be set to equal values. This option can be used to
create “twister” programs (see page 13).

Clone block – pick a block of defined size from upper-left corner and fill
the field with its copies.

Rule 30 and other rules:

Following set of field generators use Stephen Wolfram binary cellular
automaton rules, to generate field contents, using the top line as the
seed. In this function state of each cell is derived from state of three cells
directly above the cell being written. Rules define which set of cell states,
produces which outcome. For example 111=0, 101=0 and so on, for each of
8 combinations.

Rule 30 states: 111=0, 110=0, 101=0, 100=1, 011=1, 010=1, 001=1, 000=0.
It can be simplified to binary string 0001110, which equals 30 in decimal
system. Hence the name, Rule 30.

process field
drop-down

menu

example of rule mechanics

parent cells
set 010

derived cell
state

�

Rule is being applied to following cells, row by row, downward the field.
For a cell at the edge of the field, parent cell set is being wrapped around
the field edge. So, for example upper left parent cell for cell 1,2 is cell 22,1.

Selected field width is being used as pattern width, hidden field section to
the right is not being written. On the other hand, the field is being written
fully downward, including hidden part. That is, because the hidden part
below the field, can be used to modulate field contents.

There are several rules to choose from, which produce different pattern
types, being mixture of organic chaos and order. To use the rule based
generator, program cells in the top line of the field and then apply a rule.

Note that this function needs a ‘crackle’ to produce something
interesting, filling top line with uniform data (all empty cells, all filled cells
or repeating “01” string), will generate a uniform field, likely a blank one.

The selection of rules is somewhat subjective, I picked the most known
ones and ones, which I thought, can be useful in the context.

To learn more about the rules, see the Atlas of Elementary Cellular
Automata at: http://atlas.wolfram.com/01/01/

Remaining PROCESS FIELD menu options are not strictly field related:

Create random preset – configure all sequencer options, filling it with
more or less random data. The generator will set-up the field, cursors,
note maps, occasionally it will use animator (but only move modes).
When any melodic cursors are used it will also set up a chord progression,
with exception for pentatonic scales which sometimes will have a
progression and sometimes will not. Preset generator will respect preset
loading filters (see page 42), you can turn off some parameter groups and
only randomise some areas, for example note maps and progression.

Reset all cursors – clear setting for all cursors (the same can be achieved
by resetting a cursor with edit all cursors switch on).

FULL RESET – resets all sequencer settings, including field and note maps.

UNDO – cancel last operation. Undo works by writing a preset to a special
slot, before performing certain operations. You can recall stored settings
by selecting UNDO from the drop-down menu. If you’re not happy with
what has been restored, select UNDO again, to go back to state from
before calling UNDO. Restore points are created for all mass operations:
all options available in process field menu, changes applied to all
cursors, loading presets, etc. Restore points are not created for some
functions which would be very easy to undo manually, like changing field
dimensions. Undo function can be selective, recalling only defined data
groups (see page 42).field contents

derived from a
single filled cell

by Rule 30

�

Cursor mechanics and movement
Cracklefield can animate up to 8 cursors. Cursors can be used to trigger
notes or just to interact with sequencer field and/or other cursors. Each
cursor is displayed in different colour. The cell occupied by a cursor
is coloured with the same colour as cursor on/off button and cursor
sound menu.

Cursor can be turned on and off with ON button. An off cursor is not
being displayed in the field and will be ignored when running the
sequencer. Placing a cursor outside of defined field area (at one of
unused cells), has the same effect as turning it off. Except, it’s position is
being displayed in the field grid.

Switch to MOTION tab to configure the way cursors move.

cursor on/off
button

cursor sound
menu

cursor type cursor mode

cursor
speed

cursor
direction

diagonal
mode

cursor
rate

cursor
position

Cursor Direction defines cursor heading (left/right/up/down).
The controller acts as vertical slider.

Diagonal mode switch (looking as “+” or “x”, depending on setting),
changes heading options to up-left, up-right, down-left, down-right.
Switching cursor to diagonal mode, also changes the direction controller
appearance.

There are two basic cursor modes, bounce and pass through.

In Pass through mode cursor behaves, as in regular sequencers. It
moves forward until the field edge and then it wraps around reappearing
on the opposite side of the field. In diagonal mode it reappears on side
field edge, so it continues travelling in the same diagonal line. PASS
THROUGH cursors do not interact with obstacles or other cursors, they
treat wall cells as a gap in the field, teleporting instantly to the other side
of a wall. This property can be used to create simple looped patterns of
different length on the same field.

In bounce mode the cursor will bounce off field edges, walls and
(if collision engine is enabled) other cursors. When running into an
obstacle, bouncing cursor will change its direction and continue
moving. In horizontal/vertical mode, the direction will be changed to
opposite. Cursor travelling left will be travelling right, cursor travelling
up will be travelling down. A collision cannot change cursor’s direction
from horizontal to vertical or the other way around, left-right/up-down
movement can be only altered manually.

In diagonal mode bouncing mechanics are a bit more sophisticated,
cursor can change direction by 90 degrees, or bounce back, depending
on type of obstacle, as shown in illustration below.

side bounces bouncing back

�

Cursor Position controllers can be used to position the cursor at
specified coordinates (however it is easier to achieve using SET CURSOR
mode and clicking on desired cell). The X-Y controllers act as horizontal
and vertical sliders and can be automated. They change values while the
cursor is moving.

JUMP controller defines cursor speed, that is, how many cells the cursor
travels in one sequencer step. If you set cursor speed to a value other
than “1”, it looks like cursor is jumping or skipping cells. The cursor will
trigger sound depending on the value of the cell it moves onto during the
step, however it will travel through all steps interacting with obstacles in
the way. If you place a higher speed cursor against a single cell wall, it
will not jump over, but it will bounce back. If collisions are enabled, it will
also bounce off any cursors being in the way.

Cursor rate, defines cursor movement timing, that is, how often and
when cursor moves. Cursor rate is measured in note fractions (including
triplets), so cursor movement is synchronized with host tempo. Smallest
(fastest) available cursor rate is 32nd note, largest (slowest) rate is
whole note.

On the bottom of movement tab, there is sequencer speed controller.
It can be used to adjust entire sequencer engine speed, relative to host’s
tempo. It can be adjusted, while sequencer is playing to create slowdown
or speedup effect, or it can be pre-set to x0.5 or x2.0, which is equal to
half tempo, or double tempo.

There is cursor parameter named OFFSET, which is related to cursor RATE.
It is located in SHAPE tab. It will delay cursor movement relative to other
cursors. It can be used to create a kind of interlaced cursor movement.
For example, if you set two cursors to rate of eighth note, they will trigger
notes simultaneously at every eight note. If you set one of those cursors
to offset of a 16th note, the cursors will not play simultaneously, as
one of them moves a 16th note later than the other. The sequence would
contain notes every 16th note and every second note would be generated
by the other cursor.

Similarly you can set four cursors to rate of quarter note and set offset
values to: none, 16th note, eighth note, 3/4 quarter note. Which is the
reason for 3/4 quarter and 3/4 half to be included in rate values.

As you can see, cursors are moving at different time points. When the
sequencer is running, it will update the sequence counter. Counter value
equals to how many 32nd note steps have passed since the sequencer
started. Starting/stopping the sequencer does not reset the counter,
as it could change cursor’s position in movement queue. This way you
can pause/resume sequence, without changing the way it evolves.
Sequencer counter is being reset when loading presets, when instrument
is restarted/loaded, or it can be reset manually at any moment, by
clicking on sequence counter label. Resetting the counter while the
sequencer is running will make the sequence skip forward and will likely
change cursor’s queue order, if offset parameter is used.

SHAPE tab
switch

OFFSET
drop-down menucursor RATE

drop-down menu

global,
sequencer

speed

click here
to reset

sequence
counter

�

Cursor collisions
As it has been mentioned, cursors can bounce off each other. Considering
that there are up to eight cursors, which can have different rates, different
speeds and move at different times, collision detector is not quite
trivial function.

Cursor collision detector can be turned on/off using Collisions switch.
Only cursors in BOUNCE mode are analysed by the detector, cursors
in PASS THROUGH mode are considered “invisible” to other cursors.
So, if collision detector is off, bouncing cursors only bounce off static
obstacles: walls or field edges. When collisions are on, they also
interact with each other.

To make the collision detector relatively simple and fast, the cursors
are being moved one after another, using a simple set of rules: a cursor
cannot travel onto another cursor (pass through cursors excluded), if
the way is clear, it moves, if there is another cursor in the way, cursor
changes direction, as if it was bouncing off a static obstacle, additionally,
it is changing direction of the other cursor (if the other cursor moves
in collision course). If cursor is bounced, the detector leaves it alone
and moves to next cursor. When it reaches last cursor, it starts from the
beginning and tries to move cursors that haven’t moved yet.

All bouncing cursors are analysed in a loop, until every cursor has found
a clear cell to move to, or it has exceeded a defined number of cycles,
then it is being considered “blocked” and left as is. If such event happens,
the sequencer displays a message in Kontakt’s message bar, stating
“Unresolved collision for X cursors”, where X is number of blocked cursors.
Such situations may occur naturally depending on circumstances, for
example when a fast rate cursor is blocked by several slower rate cursors

waiting for their time to move. Easiest way to create a blocked cursor,
is to surround it by walls (or slower rate cursors). In symmetric setups,
it may happen that blocking a single cursor may destroy system’s
symmetry, which may depend on cursor order in the queue (as cursors
are analysed in order).

It can happen that a moving cursor bounces off a cursor, which is not
moving at given turn. In such situation waiting cursor changes direction,
but doesn’t move until its turn comes. Slow rate cursor can change
direction several times, bounced by faster cursors, before it moves. It is
possible that a fast cursor runs into the back of slower cursor travelling in
the same direction, in which case, the faster cursor will bounce back and
slower cursor will continue on its course.

If a diagonal cursor bounces off a horizontal/vertical cursor, it can change
the other cursor’s heading, but only, if it is on opposite course, as shown
in illustration below.

before collision after collision

before collision after collision

collisions on/
off switch

10

Cursor types: floater and its variations
There are several cursor types to choose from. They differ, in the way
cursor interacts with field contents, walls and field boundaries. The basic
cursor type is named FLOATER, it has no impact on field contents or walls,
it bounces off field edges and walls in the way described above. Next
six cursor types are variations of a FLOATER, adding different kinds of
interaction with field contents and walls.

Cursor list:

FLOATER – basic cursor type, no special properties.

INVERTER – flips the state of cells it travels onto; fills empty cells, clears
filled cells.

PAINTER – fills every cell it travels onto.

ERASER – clears every cell it travels onto.

SHUFFLER – is interesting one, it slides whole field row and/or column
in the direction it travels. For example, if it is moving horizontally to the
right, it slides the whole field contents row to the right. Moved data wraps
around the field edge, the cells pushed beyond field edge reappear on
the opposite side. In diagonal mode, it slides both, field row and field
column. Note that in horizontal/vertical mode, it is quite useless as a
playback cursor, because the cells are being moved along with it, so it
either triggers a note on every step or never triggers one. It can be used
to dynamically modify field contents, when set to silent mode.

Unlike previous cursors, SHUFFLER modifies the field in every discrete
step, for example, if the cursor’s JUMP setting is set to 3, the field row/
column will be moved by 3 cells on each step. PAINTER OR ERASER, will
only change the state of every 3rd cell, using the same setting.

Note that, except for shufflers, cursors trigger notes prior to changing field
contents, they look if cell is filled or empty, play note on filled cell and
then modify cell value.

cursor type drop-down menu

11

Following three cursor types interact with walls:

BUILDER – sets a wall on every cell it travels to. Builder doesn’t detect
walls, it doesn’t bounce off walls and it doesn’t teleport through walls.
It still does bounce off cursors and field edges.

CRUSHER – in BOUNCE mode, it removes wall from a cell after bouncing off
it. In PASS THROUGH mode it clears walls from cells it travels onto.

SHIFTER – similarly to SHUFFLER, it slides entire wall row/column. Similarly
as a BUILDER, SHIFTER does not detect walls, it doesn’t bounce off walls or
teleport through. Note that collision detector will not check for collisions
between moving walls and cursors, so a wall may be shifted onto
a cursor.

Cursor types: ants and drones
Following family of cursors is based on mathematical phenomenon
named “Langton’s ant”. It is two dimensional cellular automaton, with very
simple program, which produces surprisingly complex patterns.

The basic ant program is:
At empty cell, turn 90 degrees right, change cell state, move forward.
At filled cell, turn 90 degrees left, change cell state, move forward.

Example pattern development for single ant is illustrated below.

initial pattern pattern after 100 steps

pattern after 1000 steps pattern after 5000 steps

12

Ants are fascinating, as it feels like observing some basic forces of nature
at play. With Cracklefield you can also listen to them.

Ant cursors behave like regular ones, they bounce off each other, interact
with walls and field edges. The difference is that they change visited cell
state and they change direction depending on cell value.

Basic ant cursor types are:

RL Ant – which stands for right-left, turn right at empty cell, turn left at
filled cell.

LR Ant – left-right, turn left at empty cell, turn right at filled cell.

There is extended set of ant types, based on idea of having more than
two cell states. Here three states are being used. Cells with value of “0”
are empty cells. Value of “1” equals a filled cell. For the third state, the
instrument uses cells with value of “2”, just for three state ants.

Every other cursor will recognize a “2” cell as an empty cell. It is also
not possible to program those cells manually. A cell can be given value
of “2” only by a three step ant cursor. When visited by such cursor a “0”
becomes “1” cell, “1” cell becomes “2” cell and a “2” cell becomes “0” cell.
Two step ants treat “2” cell as an empty cell, so they change “2” cell to
“1” cell.

Three state ants are named by their program, just as basic ants.

For example, RRL Ant, means: at cell with value of “0” turn right, at cell
with value of “1” turn right, at cell with value of “2” turn left.

Additionally there’s third program command, “F”, as forward, which equals
to ‘do not change direction’.

Program for RFL Ant, decodes as: at cell with value of “0” turn right, at cell
with value of “1” do not change direction, at cell with value of “2” turn left.

Here’s list of available three state ants:

RLR Ant – right-left-right
LRL Ant – left-right-left
RRL Ant – right-right-left
LLR Ant – left-left-right
RLF Ant – right-left-forward
LRF Ant – left-right-forward
RFL Ant – right-forward-left
LFR Ant – left-forward-right
FRL Ant – forward-right-left
FLR Ant – forward-left-right

Another set of ant derivative cursors, is called DRONES. A drone is an ant
which does not change cell state, it changes direction depending on cell
value, but it does not interfere with it. Drones are not particularly useful
alone, but they can create interesting setups when combined with other
cursors, following maps creates by ants or bounce off each other in a
prepared field. Only two state drones are available.

List of available drones:

RL Drone – right-left
LR Drone – left-right
RF Drone – right-forward
LF Drone – left-right
FR Drone – forward-right
FL Drone – forward-left

13

There is interesting type of ant cursor setup, called ‘twister’ in preset list.
It’s a kind of symmetrical setup where you have four ants of the same
type, set as you had taken a quarter of the field and copied it to other
three quarters, rotating field contents, cursor position and direction by
90 degrees for each following quarter. In such setup all cursors move
symmetrically, creating a kind of kaleidoscope effect.

Cracklefield provides shortcuts for creating such setups. First one is
“symmetrise (square and twist)” option in PROCESS FIELD menu. It will
prepare the field contents (alternatively you can clear the field and
let cursors create the pattern). Note that both field dimensions should
be equal, for this setup to work. Second shortcut is available in cursor
randomisation menu (signed “<<?”) for first and fifth cursor, named
“symmetrise 4 cursors (twister)”. This function will clone given cursor
properties to next three cursors, adjusting cursors position and direction.

example of pattern generated by a twister setup

Cursor types: scanners and drivers
There are three additional special movement mode cursors.

SCANNER – moves like a floater, but when it runs into an obstacle, it
makes additional move, one step down. It is handy for testing field maps,
as it attempts to visit every cell in the field.

L DRIVER – when it runs into an obstacle, it turns 90 degrees left. When
left alone in the field it will ride around its edges. In BOUNCE mode it turns
when running into walls, cursors or field edges. In PASS THROUGH mode it
only turns at field edges.

R DRIVER – same as L DRIVER, but it turns right.

Note that all three cursors only work in horizontal/vertical mode.
In diagonal mode they move as a FLOATER.

Cursor types: beacon
BEACON cursor is designed to work with field animators. It doesn’t move
by itself or change field contents. When it is placed on a filled cell it plays
a note as any other cursor. It can be used to create a setup where the
field content moves and cursors remain static.

When a BEACON is in BOUNCE mode it will change position when hit
by another (moving) cursor. Diagonally moving cursors will only push
BEACON when it’s hit “in the corner”. When such cursors collide being
“side by side”, BEACON will remain where it was and the other cursor will
bounce off.

14

Configuring cursor sound
Next to cursor on/off switch, there is drop-down menu for selecting
a sample set assigned to given cursor. A cursor can be used to play
melodies or percussive patterns. There are several sample sets to choose
from, melodic sets are prefixed with “m”, percussive with “p”.

Custom sample sets can be easily added (see page 40).

Click on SOUND tab to display sound related controllers.

The most important setting is CURSOR MAPPING MODE, selected from
drop-down menu. It determines the algorithm for deciding which notes to
play and when. First three options, USE MAP with variations, are designed
for creating melodies. Next four modes are for use with percussive
instruments. Mapping modes will be explained in following sections.

ADD/TRIM controller is modifier for mapping mode, it has different
function for different mapping modes, although they all share the
controller value.

Then there are controllers for VOLUME, PAN and PITCH for each cursor.
These parameters are applied per note and are assigned to cursor and
not to a sound. So you can have different volume, pan and pitch settings
for each cursor, even if they are all assigned to the same sample set.

Below the cursors, there are controllers for VOLUME, PITCH and PAN
randomisation. Set the range to value other than zero to make the
sequencer apply random parameter change for each note it generates.

ADD/TRIM, VOLUME, PAN and PITCH controllers act as vertical sliders.

Note that you can play a sample set by hand, using midi keyboard. The
played sample set will be one assigned to currently selected cursor (use
drop-down menu next to SET CURSOR switch, to select a cursor).

select
sample set

cursor
volume

cursor
panning

cursor
pitch

select
sound tab

set randomisation
ranges for volume,

pan and pitch

cursor mapping
mode menu

add/trim
modifier

15

Note map
For playing melodic content, the sequencer is using the note map, that
is, an array which assigns a specific note number to each cell. When a
cursor travels onto a filled cell, it reads the note number assigned to given
cell and plays that note. To use note map, pick USE NOTE MAP mode from
cursor mapping menu.

Note map is being created automatically according to given parameters,
it can also be modified manually, if you wish to do so.

Click on MAPS tab, to display note mapping parameters.

Note map will be created according to RANGE, NOTE PATTERN (SCALE), KEY
and NOTE DISTRIBUTION algorithm.

Set NOTE RANGE sliders to define lowest and highest notes to use for the
map. Defined range will be displayed in blue colour on virtual keyboard.
Only notes from defined range will be used for filling the map. Note that
the range only determines which notes will be played by the sequencer,
the whole keyboard range can be played manually with midi keyboard (in
Cracklefield sample sets are mapped to the whole note range, white keys
do not indicate an “empty” key here).

NOTE PATTERN indicates which notes in an octave should be used.
It is equivalent of picking a scale. You can pick one of pre-defined
patterns, named according to scale names they represent, from a drop
down menu (click on note pattern name).

NOTE PATTERN can be also programmed manually, by clicking on keys in
pattern controller. Note pattern name will then be set to “custom”. You can
check, if manually programmed pattern matches any of pre-defined ones.
Pick the last option from pattern menu: “(match pattern and key)”. The
program will search pattern bank and set pattern name and key, if it finds
a match. Otherwise it will display message “no match for current pattern”.

note range
controllers

pre-defined
scales menu

define scale
pattern

manually

key buttons

key knob
and menu

note
distribution

mode

velocity bank

reset velocity
menu

velocity
random
range

select
maps tab

velocity
distribution

mode

map preview
menu

defined note
range

show
velocity or

progression
controllers

16

You can change pattern ‘key’ using one of KEY buttons. Changing key
will slide defined pattern accordingly (for example, changing key from C
to C# will slide entire pattern one step to the right). For custom defined
patterns, the program assumes the user defined a pattern that matches
currently selected key.

Alternatively you can change key using a knob placed next to KEY
buttons set. The knob is there to keep compatibility with earlier versions
of Cracklefield, where primary KEY controller was a slider which could
be automated. Key can be also selected from a drop-down menu, which
again is a comes from earlier version. Additionally KEY can be selected
using defined key-switches on MIDI keyboard, so it can be easily changed
while playing (see page 41).

Select a note distribution MODE to set note mapping mode – define how
note pool is being distributed to specific cells. There are 6 available
modes:

WRAP AROUND ROUND ROBIN – assigns following notes to following cells,
when the highest note is reached, it starts from the lowest note.

WRAP AROUND UP AND DOWN – assigns following notes to following cells,
when the highest note is reached, it proceeds downward until reaching
the lowest note and so on.

INTERLACED 2 STEP – assigns following notes skipping every second note,
up and down, for each new line it starts from the beginning, increasing
start point by 1. Creates more evenly distributed map.

INTERLACED 3 STEP – same as 2 step, but skips every three notes.

OCTAVES HORIZONTAL (ROUND ROBIN) – each field line contains notes from
one octave in round robin, next line contain notes from next octave. After
reaching last octave, it starts from the beginning.

OCTAVES HORIZONTAL (SPREAD) – each field line contains notes from one
octave, octaves are being spread evenly. For example, if they are only
two octaves first 11 lines will contain first octave, next 11 lines will contain
second octave.

Here are note distribution algorithm examples, assuming the note range
spans for two octaves, only available notes in the pattern are C, D and
E and the field dimensions are 5x5 (in fact they are always 22x22, for
writing a note map, field width and height controllers are not considered).

wrap around round robin

C1 D1 E1 C2 D2

E2 C1 D1 E1 C2

D2 E2 C1 D1 E1

C2 D2 E2 C1 D1

E1 C2 E2 D2 C1

wrap around UP AND DOWN

C1 D1 E1 C2 D2

E2 D2 C2 E1 D1

C1 D1 E1 C2 D2

E2 D2 C2 E1 D1

C1 D1 E1 C2 D2

OCTAVES HORIZONTAL (RR)

C1 D1 E1 C1 D1

C2 D2 E2 C2 D2

C1 D1 E1 C1 D1

C2 D2 E2 C2 D2

C1 D1 E1 C1 D1

OCTAVES HORIZONTAL (SPREAD)

C1 D1 E1 C1 D1

C1 D1 E1 C1 D1

C1 D1 E1 C1 D1

C2 D2 E2 C2 D2

C2 D2 E2 C2 D2

17

It’s best to pick distribution mode by ear, try different modes to see which
works best in given setup.

If you’d like to check current map exact assignments, use
MAP PREVIEW menu. Pick note numbers or note names, to display note
assignments over field cells.

You can tweak cursor generated notes further, by changing mapping
mode, ADD modifier and cursor PITCH.

ADD parameter changes the cell index position used to read mapped
note number, making cursor fetch notes from different map area. For
example, cursor position is x=2, y=1 and add=2, the sequencer looks at
cell 2,1 to see if the cell state is empty of filled, if it’s filled, it looks at map
coordinates 4,1 to fetch note number to play (2 is added to cell index
just for the purpose of reading the note map). Cell index numbers go
from left to right downward. So first field line covers number from 0 to 21,
next from 22 to 43 and so on. You can preview index numbers using
MAP PREVIEW MENU.

Again, it’s best to approach ADD parameter by ear, tweak it, to get
different note patterns from the same cursor route.

Additionally, there’s REVERSED mapping mode, which makes note map to
be read in reverse, first cell is assigned last value in the map and so on
(just for purpose of reading the note map).

In USE MAP mode, changing cursor pitch does not simply detune played
sound, but it adds to note number. The note number is then being aligned
to nearest note matching defined note pattern, so cursor always plays
“in tune”. In other words, there is “force to scale” tuning function which
is always active in USE NOTE MAP mode. If you do not want to use tuning,
pick chromatic scale as note pattern. Using PITCH parameter can make
the instrument play notes out of defined range.

Chord mode
Third tuned mapping variation is named USE NOTE MAP (CHORD). It is
simple chord generator, making a single cursor play several notes at once
at a filled cell.

When CHORD mode is selected, ADD parameter is being transformed to
chord size modifier. It displays as DYAD, TRIAD, TETRAD, PENTAD, HEXAD,
HEPTAD and OCTAD, that is, 2-note chord, 3-note chord and so on up to
8-note chord.

Notes in a chord are calculated by walking two steps forward through
defined note pattern or playing following notes in pattern when
progression generator is active.

For example, let’s assume note pattern matches major scale (ionian) in C
(white keys). Note pattern is C-D-E-F-G-A-B.

Now, if mapped note is C1, a DYAD chord will be C1-E1, TRIAD will be C1-E1-G1,
TETRAD C1-E1-G1-B1 and so on. Every other note in the pattern is skipped.

Cursor PITCH is used to determine first note in the chord, remaining notes
are calculated from the first one.

Using LAG parameter in CHORD mode will delay each note in the chord,
creating a strumming effect (see page 27). The strummed chords will play
upward or downward, depending on cursor position.

18

Progression generator
Cracklefield can generate chord/pattern progressions. You can create a
set of sub-patterns/chords and then switch through individual patterns
as the sequencer is playing. A new note map will be generated each time
a new chord is selected. Chords can be loaded manually or sequenced.

To activate the progression generator, click the PROGRESSION button. You
will notice that the notes of the selected chord will be coloured red on the
note pattern keyboard.

There are 12 editable chords which can be organised in a sequence of up
to 36 steps. The sequence is split into three pages with 12 steps viewable
on each page. When the SEQUENCE button is on, progression steps will
automatically be selected when the main sequencer is running.

You can select a sequence step manually by clicking on one of the small
empty buttons in the bottom row of the sequence programmer. Any
of 12 chords can be assigned to a given step using drop-down menus
– rectangular controllers in the middle row of the sequence programmer.

Chords are named using the numbers 1–12. Pre-defined chords follow the
formula: root = chord number, +2, +2. So, for example, in chord 1, the first
note is pattern root note (main pattern key), next note is two tones away
from first note (counting only notes that belong to selected scale) and
third note is two tones away from the second note.

Since chords are defined in such a relativistic way, they will automatically
translate to any scale you select. For example in Ionian C:

chord 1 = C-E-G = C major = I
chord 2 = D-F-A = D minor = ii
and so on

same chord formula applied to
Aeolian E translates to:

chord 1 = E-G-B = E minor = i
chord 2 = F#-A-C = F# dim = ii0
and so on

selected chord
is coloured red
on the pattern

keyboard

progression
generator on/off

switch

progression
sequencer

on/off switch

selected chord

selected chord
name

sequence length

sequencer rate

progression
tool menu

sequencer order

show
progression
controllers

click here to select a
progression sequence step

click here
to assign
a chord to
sequence

step

select previous/next
step in sequence

select chord
type

display sequence page
(steps 1–12, 13–24 or 25–36)

automatically select
sequence page

scale
root

chord
root (2)

following
tones (+2, +2)

19

The chord formula is applied over a 12 tone pattern in wrap-around mode,
as in the example below:

Ionian D – chord 5 (A major)

For a seven tone pattern/scale, chord 8 is the same as chord 1 (because
root 8 is trimmed to fit 7 note pattern, becoming 1), chord 9 is the same as
chord 2 and so on.

1 2 4 5

37

6

scale
root

chord root
(5)

third tone
(7+2)

second tone
wrapped around

 (5+2 = 7)

Cracklefield will recognise basic chord types and display selected chord
name in the sequence counter box (when maps tab is selected). If a
chord is not recognised, it will display the note sequence of the chord.
Because chords are applied in wrap-around manner, the machine will not
make distinctions between inversions.

Selected chord mask will be applied over defined note range by repeating
the 12 tone mask. Notes that belong to selected chord mask will be
coloured red on virtual keyboard, as illustrated below.

Progression sequence
Use STEPS controller to set progression sequence length. Unused steps
will be displayed in a lighter shade of grey. Turn on SEQUENCE button
and the next progression step will be automatically selected as the
main sequencer is running. Use RATE controller to define how often
to change steps. Alternatively you can move the sequence manually
– leave SEQUENCE button off and use next/previous buttons to select
steps (small arrow buttons above first and second step). Or you could
just automate step selection buttons, in which case sequence length
controller has no use, as it only defines sequence border step.

STEPS controller may not be very convenient to use; alternatively, hold
ALT key and click on step selection button to define new last step in
the sequence.

Example: to set up popular I–V–vi–IV
progression, set sequence length
to 4, program sequence to 1, 5, 6, 4
and select Ionian (major) pattern
scale. If you switch the pattern to
Aeolian (minor), the progression will
translate to i-v-VI-iv.

When using pattern sequencer, the
machine will select following steps
according to ORDER controller. The
most simple option is ‘forward’, in
which case example sequence will
play as 1-5-6-4-1-5-6-4... It can be
changed to ‘ping-pong’ and it will go
forward and backward:
1-5-6-4-6-5-1-5...

Both modes are synchronised with main sequencer clock. If you stop
and start the sequencer, progression sequence will continue from
where it has stopped. To restart the sequence, you need to restart
the main sequencer clock – click on sequence counter box, next
to main sequencer START button. Sequencer always restarts when
loading presets.

20

There are three more sequence ORDER modes: random, auto (by cursors)
and auto (by field). In random mode, next sequence step is being
selected randomly from steps within range of sequence length. Auto
modes are somewhat similar to random mode, but number of new step
is synchronised with situation on the field. For auto (by field) mode, at
the moment of step change, the machine will calculate a checksum of
the field contents (cells being on or off in defined field boundaries). Then
the checksum will be used to draw a number. The idea is that the same
field map will always generate the same draw, so if you are using a static
(not changing) field, the progression sequence will not be moving – so
it’s a good idea to only use ‘by field’ option when the field is evolving (for
example ants or animator are used). ‘By cursors’ mode works similarly,
but instead of the field checksum, a checksum of cursor configuration is
being calculated. Cursor checksum depends on positions of all cursors on
the field. Also different cursors have different ‘weight’, so the cursor order
matters (unused cursors are not counted).

As mentioned earlier, a sequence can be up to 36 steps long with the
sequence controllers being split into 3 pages of 12 steps. Use one of three
wide blank buttons to select a page. When a small star/ asterisk button
is enabled, whenever the sequencer selects a new step outside of the
currently displayed page, the appropriate page will automatically be
selected; otherwise the newly selected step will not be visible.

automatically select
sequence page to follow

selected step

select a sequence page

Programming chords
Each of 12 available chords can be programmed manually, so you are not
restricted to standard triad chords. To edit a chord, first select a sequence
step which points directly to one of 12 chords (other sequence program
options will be explained in the next section, page 22). Now simply click on
the note pattern keyboard to turn notes on or off. Note that you can only
select notes that belong to the currently selected scale. Also, you can’t
have less than 1 note in a ‘chord’ and you can’t select more than 7 notes.

A changed chord is saved instantly. When you have several sequence
steps pointing to chord 1, reprogramming the chord will affect all those
steps. Programmed chords are saved within presets. To reset all chords
to default, use the progression tool menu (question mark box) and pick
‘reset progression patterns’.

The pattern keyboard works s a chord
programmer when PROGRESSION
switch is on. To program a custom
scale, turn the PROGRESSION
button off.

Manually-programmed chords can
be useful when you want to use a
progression which does not fit a
single scale and key, like A minor
- A major. In such a case, you can
select a chromatic scale and define
the following chords manually (for
example, chord 1 = A minor, chord 2 =
A major).

Note that the programmed chord is
automatically being converted to the
relativistic formula (root position + tone
intervals within scale) and is stored as
such. So if you select a different scale,
the defined chords will automatically
translate to fit the new pattern.

step 1 is selected, it points to
chord 1, but it could point to any

other chord, as step 2 which
points to chord 5

use pattern keyboard to edit
chord 1

21

Chord modes
Each of 12 available chords can be set to one of three modes. The basic
default mode is 12 tone mask, which is then applied to all octaves in
defined note range. It is simple to program and may be good enough for
many users, although it has some obvious limitations. For example, it
is impossible to program 9th or 13th chords. For more advanced chord
programming there are two more chord modes available: 24 tone mask
and formula mode. When a sequence step pointing directly to a chord is
selected, you can switch selected chord’s mode using mode buttons.

12 tone mask 24 tone mask formula mode

24 tone mask is analogous to 12 tone mask, except the pattern keyboard
is extended. Here’s a C9th chord programmed in 24 mask:

And this is how it is applied to
the note range:

In formula mode, pattern keyboard is not used. Instead you can program
the sub-pattern formula directly, defining root note and pattern intervals.
Unlike with mask modes, the root note can be any note in MIDI range that
belongs to selected master pattern / scale. The note pattern is then built
around the root note over the whole MIDI range. Formula root number is
not the MIDI note number, but the number of note counting only notes
that belong to defined scale. Below you can see “54: 4-3-6” formula
applied over chromatic scale and how it translates to the note range.

formula root note is coloured black in virtual keyboard

root +4 root +4 +3 root +4 +3 +6root -6

root +4 +3 +6 +4

root -6 -3

formula root note click here to select next
note that belongs to scale

as formula root

click here to select first
scale root note in selected

range as formula root

click here to MIDI learn the
formula root note – you can
pick the root by clicking on

the virtual keyboard

define the formula using
drop-down menus, the
formula can be up to

6 steps long

formula mode selected for
chord 1

22

Formula mode can be useful when generating content to use with
microtuning, when you deal with scales larger than 12 tones. It can also
give more interesting results with pentatonic or symmetric scales, where
mask mode can be too restrictive. It is one of those features that can be
entirely ignored if you don’t feel you need it.

Programming progression sequence
There are more options in the sequence step menu than just loading one
of the defined chords. You can program the machine to create a random
chord, or to transform a previously loaded chord. Here’s the overview of
step program options.

progression pattern 1-12 – load and select (for editing) one of 12 defined
chords,

auto pattern – create a pattern/chord using seed derived from cursor
or field checksum (in the same way as with sequence ORDER – see
page 20), the machine will draw a pseudo-random chord which will be
synchronized with field contents (from field) or with current cursors
positions (from cursors). The idea is that given cursor configuration or
field map will always generate the same chord formula.

create random pattern – generate a random pattern/chord (fitting selected
scale). A note here: this function, as well as all randomisation functions in
Cracklefield, is using a seed based pseudo-random generator. The seed is
being reset according to field checksum every time the transport starts
(you press play or record in DAW). So if you use Cracklefield in a project
and it starts from the same field contents, all pseudo-random events will
be repeated with the same results. In other words, you should get the
same sequence every time you render a project.

no change – it’s a blank step, previously loaded or generated chord will
remain unchanged. It can be used to create a sequence structure when
using auto or random patterns. For example, a sequence: random - blank
- random - random, translates to: play a random chord for two steps, then
play another random chord for one step and a third random chord for
one step.

select random step – it’s a special function which can introduce some
non-linearity to the sequence. When sequencer comes to the ‘random
step’ program, it will jump the sequencer playing position to another
randomly picked step (other than ‘select random step’, in case there are
multiple random points) and perform whatever function is assigned to the
new step.

mute step – mute the instrument for one progression sequence step. It
can be used to introduce pauses to the sequence. All functions will be
performed normally, expect for playing the notes which will be skipped.

mute step (second half) or (last quarter) – is a crossover between a blank
step and a mute step. It can be used to make short pauses. Mute second
half will play the first half of the progression step and mute the second
half. Similarly ‘last quarter’ will only mute the last quarter of the step.

change offset -6 to +6 – change progression chord root note and keep
chord structure. For example, following sequence: “chord 1, chord 5,
chord 6, chord 4” (assuming we are using default chords where chord
root equals chord number) is equivalent to “chord 1, offset +4, offset +1,
offset -2”. In mask modes offset will wrap around if you push the root note
out of the scale length. Offset change can be useful with auto/random
patterns to set up a half random - half fixed progression.

auto formula – create random formula-based pattern/chord using cursor
configuration as seed. Narrow and wide iterations differ in allowed step
range – wide function will allow larger steps, producing stranger patterns.
Use to experiment. It will give interesting results with pentatonic or
symmetric scales.

Note that only step options which produce entirely new chord are
available for step one of the sequence. This is because functions that
only transform a part of chord formula wouldn’t make sense without a
pre-existing data. The first sequence step pattern is loaded each time you
start the instrument or load a preset/snapshot.

23

Progression tools menu
Click on ‘question mark’
box to access the
drop-down menu with
several progression
management functions.
Here’s what is available:

allow/disallow half tone step
– sometimes when dealing
with random chords and
certain scale patterns, the
wrapped-around progression pattern may result in two notes in a map
that are one semitone away from each other, creating a dissonance. This
function removes such dissonant notes from the final pattern. Half tone
step is disallowed by default; if you intend to create such a chord, for
example, using chromatic scale, change it to ‘allow’. Example:

defined chord

half-tine step disallowed

half-tine step allowed

reset progression patterns – erase all 12 patterns and fill them with
default formula: root, +2, +2; root +1, +2, +2 and so on. It will erase any
manually edited chords, so use it with caution.

reset progression sequence – overwrites whole progression sequence
with default string: chord 1, chord 2, chord 3... and so on. It applies to all 36
steps; defined sequence length is not being changed.

progression tools menu

random progression sequence – assigns random chords to all 36
progression sequence steps.

duplicate sequence – repeats the defined sequence, setting sequence
length to double (considering sequence is no longer than 18 steps), useful
if you want to repeat existing progression but with some minor changes,
Example:

input sequence duplicate performed

multiply sequence – split each step into two (will only work on sequences
no longer than 18 steps). Useful to create progressions where there are
some changes at half step, like 1-1-5-5-4-6. Steps with random chords, or
transforming functions will have blank step as the duplicate. Example:

input sequence multiply performed

input sequence multiply performed

24

pick random scale and key – select random scale from set pre-defined
pattern, then select random key. It is the same function which is being
used by “create random preset”. It will prefer minor/major scales
(Ionian / Aeolian), also it will be less likely to pick exotic patterns
like Pelog.

create random progression – again this function is part of “create random
preset”. It will erase all user-edited chord patterns replacing them with
the default set and then set a random progression. It is much more
advanced than “random progression sequence”; it will set up sequence
order, length and rate. It can create completely random progressions,
including progressions which make use of chord modifying steps, or
steps generating random chords. Often it will pick one of the pre-defined
common progressions. It will use formula-based chords for pentatonic
and symmetric scales; for other patterns it will always use 12 tone mask
chords. If you intend to randomise both scale and progression, it would
be better to start with the scale, as the progression randomising function
can depend on the scale type.

Scales, progressions and tuned notes
Each cursor can have its own tuning in the range of -12 to +12 semitones,
which can be set on the SOUND tab using the PITCH controller. When a
cursor is in ‘use map mode’ (being a melodic cursor), its tuning will be
added to the note value read from the map, so you can, for example,
define a short note range and have some cursors play lowered notes
and some cursors play high notes. As such, notes generated by a tuned
cursor can go out of the defined note range.

To keep all notes within the defined scale/pattern, every generated note
will be checked to see if it fits the pattern. If not, it will be adjusted to the
nearest note that belongs to the pattern. When using the progression
generator, the master pattern will be restricted to the selected chord, so
any generated note will be fit into the currently selected chord mask.

25

Velocity map
Similarly to the note map, there is velocity map used to determine
velocity of generated notes. Unlike note map which is only used when
USE NOTE MAP mode is selected, the sequencer always looks up velocity
map when generating notes, no matter which mapping mode is selected.

Also ADD parameter is not used, when fetching velocity value from the
map, it only affects note numbers.

There are five vertical sliders forming the velocity bank, you can use them
to set velocity values used to generate the map. Values will be distributed
over the field using one of the distribution modes, as with the note map.
Note that setting a velocity to zero will effectively mute some of the cells,
which will generate no notes, even when set to filled state.

You can use velocity menu to reset, or randomise velocity bank. Picking
“no velocity variation” option will set all sliders to the same value, so each
cell will be assigned the same velocity.

Use random velocity range controller to define random velocity variation.
If the controller is set to a value other than zero, velocity will be
randomised for each generated note. The sequencer will fetch mapped
velocity value and change it by random number from defined range.

reset velocity
menu

velocity bank

velocity distribution
mode

velocity random
range show/hide custom

maps tweak
controllers

Available velocity distribution modes:

horizontal round robin – first map line is filled with first velocity value,
next line, next velocity value, when last velocity is reached, it restarts
from the beginning.

vertical round robin – first map column is filled with first velocity value,
next column, next velocity value, when last velocity is reached, it restarts
from the beginning.

horizontal up and down – first map line is filled with first velocity value,
next line, next velocity value, when last velocity is reached, it proceeds
downward the velocity bank.

vertical up and down – first map column is filled with first velocity
value, next column, next velocity value, when last velocity is reached, it
proceeds downward the velocity bank.

2x2 checker field – the map is divided into 2x2 blocks, following blocks
are filled with following velocity values.

3x3 checker field, 4x4 checker field, 5x5 checker field – the same as
above for different block sizes.

As with note map, it is possible to manually modify the map. Use CUSTOM
and CUSTOM (LEARN) velocity distribution modes, as described with
custom note map. Setting both maps (note map and velocity) to CUSTOM
(LEARN) lets you record note numbers and velocity numbers at the same
time. Note that it is impossible to manually set velocity number to zero.

You can use PREVIEW MAPS menu to see exact velocity assignments
over field cells (pick PREVIEW VELOCITY VALUES). You can keep preview
enabled, while MIDI learning the map to monitor entered values.

26

Mapping modes for percussive sample sets
Percussive sample sets in Cracklefield have different sound variation
samples mapped to following notes over the keyboard. They are intended
to use in round robin. There are two additional mapping modes to use
specially with percussive sequences. The modifier controller for these
modes is named TRIM (it is actually the same controller as ADD, just
named differently, as it has different function here).

DERIVE NOTE NUMBER FROM CURSOR POSITION

The sequencer looks up the cell index number, to calculate, which note
to play, TRIM determines the loop size. If you set TRIM to 2, following cells
will tiger the following note sequence: 0,1,0,1,0,10,1... This mapping mode
always starts from lowest note. There is REVERSED variation of the mode,
which counts notes from the highest note (127) downward. Velocity map
is used, as with all mapping modes.

CYCLE NOTES IN ROUND ROBIN

In this mode the sequencer runs a round robin counter for each cursor,
treating following notes as following round robin variations. TRIM defines
how many round robins to use. Round robin counter is increased
each time the cursor moves, so it is increased on empty cells as well.
Sequencer will play following notes from 0 upward, until loop limit is
reached. Again there is REVERSED variation of the mode, where notes are
being played from the highest note downward. Round robin cycle mode is
perhaps best suited for percussive sequences.

Note that percussive sound sets in Cracklefield do not have actual 128
round robin variations each. The number of actual round robin varies from
15 to more than 70. However each note has a sound mapped to it, usually
by repeating the same set in different order.

Custom maps
It is possible to manually edit note and/or velocity maps. Following notes
can be entered using MIDI keyboard (MIDI learned). Alternatively you can
tweak each map cell values manually.

To enter map data using MIDI controller, select CUSTOM (LEARN) mode
from one of map distribution menus (note and/or velocity). You can now
overwrite map contents by playing notes. Incoming note data will be
written to the cell that active cursor is positioned at. After writing a single
note, cursor will move forward one step, in its defined direction, wrapping
around field edges as a SCANNER. Note that cursor in diagonal mode will
not work for map MIDI learn. When you’re finished modifying note map,
change map distribution mode to CUSTOM. It will preserve entered notes.
Changing map mode to any other mode than CUSTOM, will overwrite whole
map with automatically generated data. If you happen to overwrite custom
map by accident, remember, that you can go back using UNDO function.

Press TWEAKS button to show cell tweak controllers. There are two sliders,
which can be used to manually edit map data on a cell selected cursor is
at. Using a tweak slider will automatically set corresponding map mode to
CUSTOM. You can also use a drop-down menu to process custom maps in
different ways, clone map fragments, slide or shuffle cells.

When using custom map, remember that ADD parameter moves map
reading point, if you have ADD value assigned to a cursor, it will read
from different portion of the map, than it had been recording to. To avoid
confusion, set ADD to zero. Also, remember that all notes are being tuned
to defined scale before playing, if you record notes that do not belong
to the note pattern, they will be aligned. To avoid that, select chromatic
scale as the note pattern and disable progression generator.

call tweak menu

cell edit sliders for note and velocity

press to hide tweak controllers

27

Cursor shape tab
In cursor shape tab, there are controllers for shaping volume envelope for
sounds assigned to given cursor, as well as cursor and sound timing.

There are three volume envelope controllers: ATTACK, HOLD and TAIL.

ATTACK and TAIL are assigned to AHDSR envelope’s attack and release
parameters. These parameters are bound to specific sound set. If you
assign the same sound to different cursors, ATTACK and TAIL controller
values will be shared by those cursors. If you adjust the parameter for
one cursor, it will be changed for all cursors sharing the same sound. The
reason behind such design, is to make adding new sounds, as easy as
possible. In Cracklefield one sound, equals one group.

HOLD parameter is basically note duration, as percentage of cursor’s rate.
So, if cursor rate is 16th note, 100% HOLD generates notes with duration of
16th note. This setting is independent to each cursor.

OFFSET parameter has been explained in cursor movement section
(page 8).

Finally there’s LAG parameter, which defines delay between cursor move
time and playing the note. LAG is set in milliseconds and can be used
for humanizing or strumming effects. After a cursor moves onto a filled
cell, the sequencer calculates note properties and waits for a duration
defined by LAG, before playing actual note. Note that in Chord mode, LAG
is applied after each following note in chord, creating strumming effect.
Maximum LAG is 500 ms, that is, half a second. LAG value is independent
of host’s tempo.

There are range randomisation controllers for HOLD and LAG parameters.
For each note being played by the sequencer, a random value from
defined range will be added to, or subtracted from value defined by given
cursor’s HOLD and LAG controllers.

hold
randomisation

range

lag
 randomisation

range

shape tab

cursor’s lag

cursor’s offset

attack, hold and tail controllers

28

Cursor randomisation
On the right side of cursor controllers cluster, there are controllers
marked “<<?”, visible on MOTION AND SOUND tabs, which bring up cursor
randomisation menu. You can choose to apply random set of values to
some of cursor properties, or reset all of cursor’s controllers. Used with
EDIT ALL CURSORS switch on, the function will apply randomisation to all
of the cursors, which are turned ON.

Available options:

randomise cursor mapping – pick random cursor mapping option and
set random value for add/trim controller. This function will also reset
LAG parameter, using random lag for chord mapping mode. Randomiser
function will make distinction between melodic and percussive sounds
and assign mapping modes accordingly.

randomise cursor motion – pick random values for cursor’s direction,
diagonal mode and speed (JUMP). JUMP value will be randomised scarcely.

randomise cursor pan – pick random value for cursor panning, when
applied to all cursors, the function will try to create a balanced
distribution.

randomise cursor pitch – random value for cursor’s pitch controller, when
applied to all cursors, value of zero is slightly preferred.

randomise cursor position – place cursor at a random cell. The function
will pick a cell within defined field boundaries. If possible, it will also try
not to place a cursor at a wall or at another cursor.

randomise cursor rate – pick random value for rate controller. The
function is not very likely to pick triplets and it will not pick 32nd rate.
It will reset offset controller, sometimes it will set offset to fraction of
cursor’s rate.

randomise cursor sound (sample set) – set random sound. The function
makes distinction between melodic and percussive sound and will not
substitute one with the other.

Edit all cursors switch
EDIT ALL CURSORS switch can be used, when programming cursor
properties. When the switch is on and you edit a cursor parameter, the
edited parameter value will be copied to all cursors. This functionality
applies to all cursor parameters.

This option can be handy, but it makes it easy to overwrite some settings
by accident. If you happen to forget, to turn it off and erase some
carefully built setup, use UNDO function from PROCESS FIELD menu.

edit all cursors
switch

29

randomise cursor type – pick random cursor type and cursor mode
(BOUNCE or PASS THROUGH). The function has slight preference for
FLOATER type.

randomise cursor volume – pick random value for cursor’s VOLUME
controller. The function will pick the value from range -12 dB to 0 dB.

randomise cursor arp mod – random value for MOD range in ARP mode.

randomise cursor arp note – assign random arp chord note. Note that,
when applied to all cursors, the function will proceed from lowest note
upward, assign lowest note to random number of following cursors,
assign next note to random number of following cursors and so on.
Otherwise the sequence wouldn’t be playable in ARP mode.

randomise all cursor settings – do all of the above. This function will
not turn cursors ON/OFF and it will not replace a melodic sound with
percussive one (balance between melodic and percussive sounds has to
be set manually). Cursor sound volume envelope is not randomised either.

reset cursor arp note – reset arp chord note assignment.

reset cursor – reset all cursor parameters to default.

Special options:

These options appear only in randomisation menu for first and fourth
cursors. They always apply to set of four following cursors.

symmetrise 4 cursors (twister) – set three following cursor position
and motion parameters for a twister symmetric setup, according to the
first cursor. This function also copies first cursor’s type, mode, rate and
offset to three following cursors.

symmetrise 4 cursors (mirror) – similar to previous function, but it will
mirror cursor position and direction, instead of rotating coordinates.

cue 4 cursors (offset) – set following four cursors rate and offset
parameters, so they move one after another at the same rate. This
function only sets rates of quarter or half note, depending on first cursor
rate (quarter and smaller will be all rounded to quarter, any longer rate will
be rounded to half).

Note that previous functions overwrite OFFSET values, so if you want to
do both, pick symmetrise or mirror first.

All three functions ignore EDIT ALL CURSORS switch.

30

ARP mode
Cracklefield can be set to ARP mode using ARP button. In arp mode
cursors do not use mapping modes, but can be assigned to trigger one
of the notes from the chord being held on MIDI keyboard. Sequencer
START button has no function in arp mode, the sequencer starts when
there are notes held in arp area and stops when last note is released.

In ARP mode, note range from NOTE MAP tab is used to define arp range.
MIDI notes which belong to defined arp range will control arp engine,
notes from outside of the range can be used to play melody by hand. This
way the instrument can be configured to control arp with one hand and
jam along with it, using the other hand.

Notes generated in arp mode are being adjusted to fit selected note
pattern. To disable tuning, select chromatic scale pattern and disable
progression generator. Velocity map is used as always.

After selecting arp mode, there will be new option in NOTE MAP tab,
AUTOSELECT ROOT KEY. When it’s enabled, the key will be automatically
adjusted to match the lowest note of the chord being held in arp range.
In arp mode, there are two new controllers in SOUND tab.

Arp chord note is assigned to every cursor, it tells the sequencer which
note to play when cursor travels onto a filled cell. ARP 1 is the lowest note
being held in defined arp range, ARP 2 is the second lowest note held and
so on. You can assign the same arp note to different cursors at the same
time. The cursor pitch value will be added to held note number (final note
will be aligned to defined scale/note pattern).

the note range sliders
define which notes control

the arp

autoselect key
switch

arp mode
on/off switch

31

assign arp chord note
to the cursor

cursor mod value

sound tab

Arp MOD controller can be used to set modulation range for each cursor.
It works by adding a number from defined range to played note number.

The number is calculated from cursor position, in round robin. So for
example, for MOD +3, if cursor position is 1,1, 0 will be added to played note
number, for 2,1 position it will be 1, for 3,1 – 2, for 4,1 – 3 and for 5,1 – 0 (it
restarts from the beginning).

Together with NOTE PATTERN, ARP MOD can be used to create alternating
melody sequences, triggered by just holding one chord.

32

Field Animators
Field animator is function which can be used to transform entire
sequencer field in a single sequence step. You can configure up to four
transformations which will be applied at specified rates (in similar way
as cursors are being moved). Each animator has two basic parameters:
MODE and RATE. MODE specifies what transformation to apply and
RATE determines when it is going to be applied. Depending on mode,
additional parameters are used: DIRECTION, RULE NUMBER and LIFE RULES.
Corresponding controllers will be greyed out when they have no function
in selected MODE.

When animator mode is set to OFF, it is disabled. That is, it does nothing.
Additionally there is ANIMATE button, which is on/off switch for all
animator processing. It can be automated to stop or resume animator
processing with MIDI controller. Animator engine has two processing
modes: parallel and queued. In parallel mode animators are applied
in the same way as cursor movement is sequenced. For example when
animator rate is set to 16th, it will be applied each 16th note. When two or
more animators are set to the same rate, they will be applied both in one
sequencer step.

When cursor movement and animators are scheduled to happen at the
same sequencer step, animators are applied first, in numbering order.
Animator 1, then Animator 2 and so on. Then cursors are being moved.

In QUEUED mode, as the name suggest, animators are applied in a queue.
Only one animator one can applied at one sequencer step and animator
RATE specifies time which should pass before applying next animator.

For example, if we have Animator 1 with rate of 16th and Animator 2 with
rate of quarter note. In the first sequence step Animator 1 applies, then
after a 16th note Animator 2 applies, then after quarter note Animator 1
applies and so on in a loop.

Speed of whole animator sequence can be scaled down with SPEED
controller. At animator speed of 1/2, rate of 16th note translates to 8th
note, rate of whole note translate to 2x whole note and so on. Animator
sequence can be slowed down up to 64 times this way.

animator tab

animator
mode

rule number

animator
rate

animator
direction

life game
rules

animator
on/off switch

animator
speed

animator
processing

mode

functions
drop-down

menu

Animator modes: MOVE
Animator modes can be selected from a drop-down menu. Modes are
divided into fore groups labelled: MOVE, GAMES OF LIFE, REBOOT LIFE and
ONE DIMENSIONAL GAMES. Modes in MOVE group will re-organize field, cells
will be moved around, but overall number of filled cells with remain the
same. Modes in GAME groups will run different kinds of cellular automata
on the field space, so the field contents will evolve.

With one exception, animators apply to field content only, that is they
change cells state, which can be filled or empty. Walls and note maps are
left intact. Note maps can be animated using animator sub-mode which
will be discussed later.

Animator modes in MOVE group:

scroll field – it is the most basic operation, it slides the whole field
one step in specified direction. You can set one of four directions
with controller similar to one used with cursors. To achieve diagonal
movement, you will need to use two animators. For example, move the
field left and then move it up. The field is moved in wrapped around
manner. That is, the line/column being moved out of field boundaries, will
re-appear at the opposite side of the field.

scroll field, even and odd variants – same as above, but only every second
row/column is being moved.

scroll field (even), direction = up

scroll walls – same as in scroll field, but only apply to walls.

whirl – splits the field into rectangular trails and rotates the cells within
each trail. This mode has clockwise/counter-clockwise and odd/even
variants.

clockwise whirl trail

wrap-in / wrap-out – splits the field into four parts diagonally, the cells
in each part are scrolled toward the field edge (wrap-out) or toward field
centre (wrap-in). The field contents wraps around individual lines/columns.

wrap-out

33

Animator: move maps
Each animator has “move maps” switch. When the switch is activated,
a scroll transformation will be applied to note maps only (note map and
velocity map – see page 15). It can be handy to introduce note variation
for a setup with beacon cursors and moving field.

Move maps is a separate, parallel function, when animator mode is set
to anything else than OFF, it does scroll note maps in animator direction.
If, for example, animator is set to whirl with “move maps” enabled, it will
apply whirl to field contents (cell on/off state) and apply scroll to the
note maps.

If you want given animator to only scroll the maps, use “null” animator
mode (last one in MOVE group). It does nothing to field contents and is
there just for this purpose.

If you enable preview maps in MAPS tab, you can observe how note
values are being moved across the field.

Note that when using progression generator, note map will be overwritten
at every progression sequence step, as progression is applied after
animator, the effect of moving note map will be lost at given step.
However it does not apply to velocity map.

Animator modes: GAMES OF LIFE
“Game of Life” invented by John Conway is, no doubt, the best known
cellular automaton. It is based on two-dimensional grid, where state of
a cell in next generation step depends on how many neighbour cells
are filled. In Game of Life convention, a filled cell is named “alive” and
an empty cell is named “dead”. When a live cell has more than 3 live
neighbours it dies because of overpopulation. When a live cell has less
than 2 live neighbours it dies of underpopulation. When a dead cell has
exactly 3 live neighbours, it becomes alive by reproduction.

The game rules can be denoted as “23/3” – live cell survives when it has
2 or 3 neighbours, a new cell is born when it has 3 neighbours. A cell can
have up to 8 neighbours, so there are many possible variants of the game,
as you can define different conditions of birth and survival. For example
23/36, known as High Life, is game where a live cell survives when it has
2 or 3 neighbours and a new cell is born when it has 3 or 6 neighbours.

Cell’s neighbourhood
is coloured red here.
This cell has 3 living

neighbours.

In Cracklefield you can program any game of life variant. Both survival
and birth conditions can address up to 9 neighbourhood values (0 to 8
neighbours), which gives us over 250.000 possible combinations. Actually
the classic set of rules is not very interesting for field sequencing, as
many initial patterns result in all cells dying out quickly.

In GAMES OF LIFE modes group there are several preprogrammed rules,
which include the most known ones (classic one is named “Conway’s
Life”) and several rules, which I though can be useful for the context.
Alternatively you can select “custom life game” and configure rules
by hand using rule programmer. Also you can select ready-made rule
and just modify it using the programmer, animator mode will be set to
“custom life game” automatically once you use rule programmer.

34

35

select animator to
apply rules to

select field type

click on numbers to
modify the rules

game of life rule programmer – classic 23/3 rule is set here

To set game of life rules, first select a pre-programmed life animator
mode or “custom life game” mode. Then select animator number in
rule programmer. If a not-applicable mode is selected, rule programmer
controllers will be greyed out. Now click on rule numbers to set them.
The actual controller type used here is X-Y pad, so you can hold mouse
button down and drag the cursor around as you would in programming a
sequence table in Kontakt.

Also there’s field type switch, where you can specify how to count
number of neighbours for a cell located at the edge of the field. In
wrapped mode, cells at the opposite side of the field are considered
neighbours. In closed field mode, neighbour cells expected outside of
field boundaries, are considered dead.

wrapped field neighbourhood closed field neighbourhood

So a cell located on field corner can only have up to 3 neighbours in
closed mode.

Additionally, for the sake of experimentation, there are four
neighbourhood shape variants of the custom life mode. They are
named t-neighbourhood, x-neighbourhood, o-neighbourhood and
u-neighbourhood. They differ in which cells are considered neighbours, as
illustrated below.

regular
neighbourhood

t-neighbourhood x-neighbourhood

o-neighbourhood u-neighbourhood

As you can see u-neighbourhood is non-symmetric/directional. It is using
direction controller to set one of four headings.

Considering that you can combine different life game rules by queuing
animators, exploration possibilities are nearly endless.

Animator modes: REBOOT LIFE
Sometimes game of life modes seem to make the field evolve endlessly
or create a loop, but often all cells die eventually. This is not quite good
for the sake of musical sequencer, as it may just go silent at some point.
As counter-measure for such situation, I added REBOOT group of animator
modes. A reboot mode will examine the field contents and if there are no
live cells at all, it will populate an initial pattern.

Available modes:

restart – at the beginning of the sequence, field contents is being saved.
When the field becomes empty, this animator mode will restore the initial
pattern.

breed x cells – create random block consisting of specified number of
alive cells. The cells will be grouped together.

breed random block – create random block consisting of random number
of cells (1–16).

36

Animator modes: one dimensional games
Finally there’s group of one dimensional games. Here the cell state
depends on state of three neighbour cells in previous generation. The
automaton mechanics has been described on pages 5–6. While thus
far it has been used to create a static field, you can now use this kind of
automaton to make a scrolling field.

This is a directional animator mode, direction controller can be used to
specify which way to unroll the rule. For example, if we set direction to
the left, the column at the right edge of the field will be used as parent
seed. In each step the whole field will be scrolled one step to the left,
erasing the column at the left edge of the field. The new column at the
right edge will evolve from parent column preceding it.

You can select a rule number from the list in the drop down menu, which
includes most known and interesting ones. Also you can use rule number
controller to set any of 256 possible rules.

Animator functions
On the right side of each animator label there’s functions drop-down
menu. There are several automated tasks you can use for animator
configuration:

move up / move down – in many cases the order of animators has impact
on pattern evolution, especially when using games. These functions let
you re-order animators quickly.

create random life game – selects life game mode and creates a random
set of rules.

reset all animators – clears all animator configuration. Use with caution,
there’s no undo.

functions
drop-down menus

37

The sounds of Cracklefield
Cracklefield comes with a selection of experimental, unique or unusual
sounds. All samples are in WAV format, 44.1 kHz, 24 bit. They take 940MB
of drive space.

Sample sets are divided to melodic and percussive, a prefix “m” has been
used to mark melodic sounds and percussive sounds have prefix “p”.

List of melodic sounds:

Brokeneck – an old acoustic guitar with broken neck. It had been repaired
to some extent, but the instrument became somewhat unstable. The
sound box has been filled with plastic foam strips to reduce resonance. It
has been recorded at very close range.

Brush Guitar – an electric guitar, which had the strings damped by a large
paintbrush positioned by the bridge. It has very short decay and spiky,
funky sound.

Copperpole and Coppervibe – mallet type sound, generated by a copper
rod. The rod has been fastened in a table top bench vice together with a
contact microphone. Played with fingers, it generated long lasting tones,
mainly infrasound, the time until the full stop was more than 1 minute for
each tone. Several clean tones have been captured, they have been then
digitally up-tuned and edited to form a sample set. Coppervibe set is built
of the same samples but has a tempo synchronized vibrato and has been
equalized for a darker tone.

Crooner – is the only fully electronic set of the lot. It’s the sound of the
singing filter. Tones from self-resonating Moog LP filter (Moogerfooger)
have been captured and edited digitally. The volume envelope has been
added in audio editor.

Glass Chimes – recorded from a large, perfectly tubular, glass vase. Partly
filled with water to tune it. It has been played with a wooden stick.

Kalimba – 7 tone kalimba, made in Poland. Recorded through contact
microphones, which have been glued to the body of the instrument,
giving it deep and detailed sound.

copperpole

kalimba

38

List of melodic sounds continued:

Laika – an old soviet balalaika, made in Leningrad. The box was broken,
giving the instrument intriguing, hollow sound. The original very old and
rusty strings have been used, as well as a set of new Rotosound ones.

Paperfuzz – an electric guitar. Two strips of paper have been slipped in
between strings at the bridge, creating a kind of mechanical fuzz.

Renchbass – Jackson Kelly electric bass, placed horizontally and played
as a zither with a set of chromium wrenches.

Szczotron – mallet-like sound derived from vocal samples (yes, it was my
voice, that has been used), shaped and tuned digitally.

Tesla Caster – electric guitar, customized Telecaster clone, with Tesla
pickups. Played gently with fingers in a wool glove, for that fuzzy
warm tone.

List of percussive sounds:

Buka – a darbuka, played loosely with fingers.

Crash Fingers – crash cymbal, played with fingers.

Crash Mellow – crash cymbal, fuzzy splashes played by a variety of
unusual objects.

Crash Rider – crash cymbal, played with variety of unusual sticks,
recorded at very close range.

Crash Softly – crash cymbal, played gently and quietly with a very light,
stick-shaped piece of wood.

Half-China – china splash cymbal, with a large part of body cut off. Played
with a metal wire brush.

Medicine-Man – large african ethnic drum, with surprisingly dull sound.
Made of very light wood, the two membranes were made from some
animal skin, which had quite a few hairy spots. Smashed violently with
a fat wooden stick.

paperfuzz

half-china

39

List of percussive sounds (continued):

Pillow Punch – yes, it’s a sleeping pillow being punched with fists. Played
back at lower samplerate.

Riceshakes – a shaker. Plastic container filled with rice.

Silverball – exercise rubber-plastic ball. Smashed with thick wooden ruler.

Teashakes – a shaker. Metal container filled with dry tea leaves.

Tom Fingers – medium floor tom. Played gently with fingers.

Tom Muted – medium floor tom. Muted by putting swirls of rope around
the membrane. Played with sticks.

Tubelets – short plastic tubes. The opening of the tube was being hit with
open hand, making a kind of pop sound. Two sizes were used for high and
low variation.

the tom

silverball

medicine-man

40

Adding user sound sets
Cracklefield has been designed, to make it relatively easy to expand the
sample pool. Each sound-set takes exactly one group, new sounds can be
added by creating new groups and adding sample maps.

To add a sound, first switch to edit mode, by pressing “the wrench”
button. You will see the list of groups. To preserve the effects and
modulation, create new group by duplicating existing one. Right click
on existing group and pick “duplicate group”. Duplicate a melodic group,
if you want to add a melodic sound (note that percussive groups have
“tracking” switch set off). Scroll down the group list, newly created group
will be at the bottom, it will have the same name as group it has been
cloned from. Click on new group to select it, click on mapping editor, to
show the sample maps. Pick “select all zones” from “edit” menu, then pick
“delete zones” from the same menu.

Now you have an empty group. You can double click the group name to
re-name it. Sound set names displayed in the Cracklefield sound menu
are the group names – you can change sound names by renaming groups.
New sounds can be mapped by hand or copied from another instrument
(edit menu in mapping editor > select all zones > copy zones, then use
paste zones in Cracklefield).

To make added sound appear in sound menu, save and re-load the
instrument, or press engine restart button (exclamation mark).

Note: Cracklefield makes distinction between melodic and percussive
sounds. Percussive sounds are recognized by examining first group
effect slot, if there is “Inverter” loaded in the first slot, the group is tagged
as percussive. It is used by randomiser function, so it won’t substitute
melodic sound with percussive one and by MIDI recorder to convert note
number based round robins to a sequence of the same note number for
percussive sounds.

It may be a good idea, not to overwrite the original Cracklefield.nki patch.
Just in case, there is the copy in ‘backup’ folder. If you need to restore the
original patch, copy the backup file to the root instrument folder.

edit mode switch

group list, right
click to access
duplicate group

command

mapping editor
switch

scroll group list

new group

edit menu

engine restart
button

41

Preset system
Cracklefield can save/load presets in its own format. Presets can be
stored externally in NKA files or internally in one of 12 memory slots,
available via key-switches. Of course, one can always use Kontakt
snapshot system. Advantage of presets over snapshots, is that presets
can be loaded without stopping the sequencer, also you can choose
which parts of data to load, you can, for example, load only the field map,
switching field contents by key-switches, while the sequencer is running.
Disadvantage of a preset is, that it doesn’t store effects configuration.

Cracklefield comes with a variety of presets available via preset browser.
To load factory preset double click the preset name. The preset browser
can also be navigated by cursor keys – single click on browser to
select it, then you can use up/down cursor keys to navigate the list and
enter key to load preset. Pressing letter keys will jump through the list
alphabetically.

Internal memory can only be accessed by key-switches (midi keys or
virtual keyboard). There are two key-switch blocks, use red coloured keys
to save a preset, use green coloured keys to load a preset. Load preset
block keys vary in colour shade, yellow-green keys indicate an empty
memory slot, darker green keys indicate that a preset has been saved
and assigned to the key. Cyan-coloured key indicate last loaded/saved
slot. There is additional magenta coloured key-switch, which automates
sequencer start/stop button.

All of internal memory is being saved within instrument patch file (NKI)
and a DAW project. It is also being saved within snapshot file.

The key-switch block can be placed anywhere on MIDI keyboard (it will
be aligned to octaves), to position key-switches in convenient keyboard
area, use PRESET AREA controller (acts as vertical slider). You can also
reverse order of key-switch blocks (save block first, then load block), to
do so, use KS (key-switch) drop-down menu and pick last option “swap
keyswitch blocks“. To remember the setting re-save instrument patch.

The second key-switch block, used to save presets, can be also used for
different functions – change scale/pattern key, or program scale/pattern.
To change key-switch functionality, use KS drop-down menu.

key-switches

factory
presets
browser

choose which
part of the

preset to load

position
key-switch

block

pick second
key-switch

function

save/load
preset files +
options menu

select
preset tab

name of
last loaded
preset will

be displayed
here

loaded
preset

available
presets

empty memory
slots

save
preset

start/stop
sequencer

42

Preset contents are divided into four parts, you can select which part
to load when loading a preset, using five switches grouped next to
LOADING FILTERS label.

CURSOR MOTION part includes: cursor on/off state, position, direction,
diagonal mode, cursor speed, rate, type and mode, cursor offset,
state of sequencer speed controller, field width and height, state of
collisions switch. Enabling this part also makes sequencer restart the
counter when loading a preset.

CURSOR SOUND part includes: cursor sound set, cursor volume, pitch
and pan, cursor mapping mode and trim/add/chord size modifier, cursor
attack, hold and tail parameters, cursor lag, cursor arp options and state
of arp switch, hold and lag randomise ranges, volume, pan and pitch
randomise ranges, cursor selection (which cursor is selected – as this
option determines which sound can be played manually).

FIELD MAPS include: field map and wall map, including hidden part,
outside of selected dimensions.

NOTE MAPS include: note range, note pattern/scale and key, note pattern
distribution mode, velocity bank, velocity distribution mode, velocity
random range, user recorded note and velocity maps.

ANIMATOR covers all animator related options, configuration of individual
animators, state of animator on/off button, animator speed rate.

Note that these switches only affect preset loading function (as well as
random preset generator). Saving a preset always include all parts.

Also, note that these switches affect UNDO functionality, as UNDO is
based on preset load/save function. If you switch one of them off, calling
UNDO will not recall all the data.

To quickly enable loading just a single preset part hold ALT key and click
on given switch. To quickly enable all switches hold SHIFT key and click
on any filter switch.

To load presets seamlessly, while sequencer is playing, you can activate
ALIGN function. It will delay the moment of loading the preset, to align it
with selected time frame (32nd note, 16th note, 8th note, quarter note or
whole note). In plug-in mode (as opposed to standalone Kontakt mode),
ALIGN function will also delay sequencer start to align the sequence with
transport (position in project song).

Additionally you can make the sequencer start whenever play button
is pressed in DAW (as well as stop with stop button), by enabling
TRANSPORT SYNC option.

Presets can be also saved to a file. To do so, use ‘save preset’ and ‘load
preset’ options from FILE MENU. Default preset save/load location is Data
folder, placed in the instrument path root folder. You can pick any folder
you like, but Kontakt will always point you to Data folder first.

Saved files are in the same format as factory presets. You can add
presets to factory set, by saving or copying them to “presets” folder.
However, to refresh preset list in the browser, you need to close and
reload the instrument.

Note that ‘presets’ folder is expected at the same path, as loaded NKI file.
If you save variations of the instrument, keep them in the same as the
original patch. Otherwise preset browser will be empty.

The name of last loaded factory preset, or last saved/loaded internal
memory slot, will be displayed on sequence counter label, next to
sequencer start button when the sequencer is stopped. Displayed preset
name will be cleared when resetting the instrument (‘full reset’ option
in ‘process field’ menu), or when loading/saving preset to file. It can be
also cleared manually, by picking ‘forget loaded preset name’ option from
FILE MENU / OPTIONS drop-down menu.

43

Alternative UI layout
User interface in Cracklefield is fairly large, taking 1000x770 pixels,
including script tabs. In some hosts, or configurations it can happen
that not all of it is visible at once. In such case, as well as for purely
aesthetic reasons, you can switch sequencer to alternative layout. In this
configuration sequencer on/off switch block is placed at the top of the
interface area. It will give you access to more commonly used controllers
without scrolling.

To switch UI layout, pick ‘change UI layout’ option from FILE MENU /
OPTIONS menu in PRESETS tab. You will need to save the instrument patch
to remember the setting.

44

Controller options
Mod-wheel and pitchbend-wheel can be used to interact with the
instrument, while sequencer is playing. You can configure these
controllers in RECORDER tab.

USE MODWHEEL TO SCROLL THE FIELD – this option is activated by
default, moving the modwheel will scroll the field map up or down. Field
contents will be wrapped around the field edge (moving the field upward,
moves the top line to the bottom of the field). The entire field is used, if
dimensions are trimmed with width and height controllers, the data will
move in and out of the hidden field area. Note that scrolling only affects
the cell’s state (filled/empty), note and velocity maps are not being
scrolled. It’s interesting way to interact with the sequencer, but if you
rather wish to use modwheel for another purpose, it can be turned off.

USE PITCHWHEEL TO MODIFY NOTE RANGE / TRANSPOSE ARP – normally
pitchwheel acts as pitchbend controller. When this option is enabled, you
can use pitchwheel to move the note map range up/down, dynamically
re-writing the note map. In effect, it is transposing all notes played by
cursors using note map. In ARP mode, this option will simply transpose
generated notes.

PITCHWHEEL RANGE – you can use the horizontal slider to set pitchbend
effect range, or (when alternative mode is enabled) arp transpose range.

FLASH VIRTUAL KEYBOARD WHEN PLAYING NOTES – as you can observe,
the sequencer colours the keys on Kontakt’s virtual keyboard, when
playing notes (only for sequencer generated notes). It can be useful
feature, to monitor the setup, but it can also be a little annoying. It can be
turned off with this switch.

controller option
switches

recorder tab

45

Effects and multi-output
There is a set of audio effects in Cracklefield: compressor, limiter, transient
shaper, basic filter, two convolution reverbs and two delays (send and
insert). Audio signal path is outlined below.

parameter
info label

effect bypass switch

effects tab
delay timing
mode menu

sound routing
menus

send
levels

transient
shaper

send
levels

send delay
send

convolution

routing convolution delay

filtercompressor

limiter
default
output

outputs 1 –8
insert effects

sample
set

Any effect can be switched to bypassed mode by clicking on the effect
name label (whole gray bar is bypass switch).

While moving a controller, the parameter value will be displayed on info
label below limiter.

Convolution reverbs use Kontakt’s factory impulse-response library. You
can use drop down menus to select an impulse, or press RANDOM button
to let the machine select a random one.

There are send level controllers for each cursor (numbered and colour
coded as cursors). However, as the instrument is built on one sample set
per group principle, controllers for cursors with the same sample set will
be linked. If you assign the same sample set to all cursors, moving any
send level controller, will affect all send levels of the same type. You can
randomise send levels by pressing RANDOM SEND LEVELS button.

Delays can be switched between absolute and tempo synchronized
timing modes, using drop-down menus. TIME controller sets actual delay
time in absolute mode, or multiplier of selected note fraction for tempo
synchronized mode.

To tame possible excessive low-end generated by convolution, you can
use LOW CUT controller (high pass) for send convolution reverb, or insert
filter’s LOW CUT for insert convolution (which affects whole chain).

46

If you want to use different effect chains for different sample sets
outside Kontakt, you can configure Cracklefield to multi-output. You can
pick specific output number from ROUTING drop-down menus. Output
1 to output 8 are Kontakt output slot numbers, actual routing depends
on Kontakt configuration. Selecting INSERT FX, will route signal to insert
effect chain and then to default Kontakt output, selecting BYPASS INSERT
routes signal directly to default output, skipping all insert effects. Note
that routing signal to a specific output, also skips insert effect chain.

Transient shaper can be used to modify balance between initial
percussive part of a sound and the sustained part. Use ATTACK and
SUSTAIN controllers to make percussive and sustained parts of the sound
louder or quieter. Note that transient shaper is not a part of insert effect
chain. It is applied at the beginning of the chain, so it affects what is
being passed to send effects. Also it is being applied to sound routed to
different outputs (unlike insert effects).

47

MIDI recorder
Cracklefield comes with a simple midi recorder, outgoing notes can be
recorded and then exported to a file or directly to DAW by drag’n’drop.

Sometimes it can be more convenient to record a clip inside the
instrument and drag it into the DAW, than to configure recording a track
from Kontakt’s MIDI out. But the real reason for including the recorder, is
that it can create multichannel clips, where different cursors are recorded
to separate MIDI channels.

To start the recording, use START RECORDING button. There is no need to
synchronize it with sequencer start, after pressing the button, recorder
will wait for a midi note to start actual recording. When recording is in
progress, recorder will display a counter, showing how many notes can
still be recorded and the recording time thus far. Recorder capacity is
100000 events, that is, 50000 notes (note on + note off message). It
should handle at least 20 minutes of a dense sequence.

Press START RECORDING button again to stop recording. When finished,
click on cassette image and drag it out of Kontakt window to create
clip file. In fact, you can drag and drop MIDI clip anytime, even when the
recorder is running.

Note that starting the recording erases MIDI buffer, so previous recording
is lost. There is no undo here, so be careful. Also, remember that the
recorder only records MIDI notes, any other data is ignored.

Multichannel recording options:

CURSORS TO SEPARATE CHANNEL – in this mode each cursor will output
notes to separate channel.

SOUNDS TO SEPARATE CHANNEL – channels will be sorted by sample sets,
different cursors with the same sound set selected will be put in one
channel.

MULTICHANNEL OFF – all notes go to single channel.

MIDI drag’n’drop
object

recording button

recording options recorder tab

More recording options:

RECORD ALL NOTES / RECORD SEQUENCER NOTES ONLY – choose, if you’d
like to record only notes generated by the sequencer, or manually played
notes as well.

PERCUSSION TO SINGLE NOTE – percussive sound sets in Cracklefield use
different note values for round robins. If you’d like to play recorded clip in
another instrument, it would make sense, if each percussive instrument
generated a specific note value (different for each sound). Use this
option to limit percussive instruments output. Note that the instrument
makes the distinction between melodic and percussive sound sets, this
option only affects percussive ones, so the two types can be mixed.

48

Performance
Cracklefield doesn’t require much processing power compared to other
instruments, as it doesn’t use many effects and modulators. For this
reason, I thought I could afford to set somewhat generous polyphony
limit. Instrument maximum voices is set to 192, which I haven’t yet
managed to reach using provided sounds.

If there is a need to reduce CPU consumption, try reducing the maximum
number of voices.

set maximum voices
number here

Changelog
1.01 update:

– In rare circumstances Cracklefied could generate a note with zero
length. When a sample with loop was used, it would result in never ending
note. There is now minimum note length limit set to 1/100 second.

– Cursor rate randomiser could set cursor offset to half note triplet. While
this setting works fine, there is no such option in the selector menu,
resulting in missing graphics glitch. Half note triplet has been ruled out as
random offset value.

1.2 update:

– Added field animators, see page 32.

– New cursor type: beacon, see page 13.

1.3 update:

– Kontakt version requirement is now raised to 5.8.1. This Kontakt version
has doubled the limit of available controllers per script, which is a great
benefit for Cracklefield. I had run out of switches and buttons, as creating
programmable field consumed many controllers of this type. When
having no button controllers left to use, I had to reach for alternatives,
using drop-down menus and sliders instead of buttons for some other
controllers, which had impact on functionality. In version 1.3 those
controllers are converted to regular buttons. It applies to ‘move/bounce’
switches in motion tab, ‘move maps’ switches in animator tab, note
pattern and key controllers in maps tab and some UI tab switches.

– On a request, there are new controllers for manual editing or tweaking
of single cells in custom maps. You can hide/show them using ‘tweaks’
button in MAPS tab. See page 26.

49

End of file
I’d like to thank James Michael Wolk for beta testing and creative input
which influenced the shape of the instrument in many ways.

If you’d like to hear about possible updates and news, subscribe to the
blog here: http://waveforms.fairlyconfusing.net

I will post updates and new products there. Alternatively you can follow
my Facebook page or subscribe to Youtube channel, see the links below.
I do not have a mailing list.

Have fun with Cracklefield.

This document ends here.

© 2019 SzcZ

www.fairlyconfusing.net

marcin@fairlyconfusing.net

www.facebook.com/szcz.audio.adventures/

www.youtube.com/c/SzcZ

Changelog
1.4 update:

– Added progression generator, pattern/chord progressions can now be
generated internally in Cracklefield, see page 18.

– There are new presets exploring the progression generator functionality,
new presets have “PSQ” prefix. Also several old presets have been
reworked to use progression.

– Tweaked random preset generator, the randomly generated presets
should be simpler more often, possibly giving more useful results. The
generator will affect the animator, reset it or occasionally set up a moving
field. The generator will now also respect preset loading filters.
See page 6.

– Fixed scale key button set not being updated on certain occasions.

– The seed for random event generator will now be reset to a derivative
of field checksum every time transport starts (you press play or record
in DAW). This way any random event sequence in the project will be
synchronized with field contents and each time you render a saved song
it would repeat the very same progression of pseudo-random events.

– Small change in main sequencer queue, the animator will be now
applied 1/3 sequence step ahead of other functions (with the exception
of the first step). As the animator transformations can be CPU intensive,
especially if you make it play several life games at one step, coupled
with progression generator, it could occasionally cause audio dropdowns.
Now that animator is processed a small while ahead of other functions it
should make such situations less likely to happen.

